Mechanism and specificity of a symmetrical benzimidazolephenylcarboxamide helicase inhibitor.
نویسندگان
چکیده
This study examines the effects of 1-N,4-N-bis[4-(1H-benzimidazol-2-yl)phenyl]benzene-1,4-dicarboxamide ((BIP)(2)B) on the NS3 helicase encoded by the hepatitis C virus (HCV). Molecular beacon-based helicase assays were used to show that (BIP)(2)B inhibits the ability of HCV helicase to separate a variety of RNA and DNA duplexes with half-maximal inhibitory concentrations ranging from 0.7 to 5 microM, depending on the nature of the substrate. In single turnover assays, (BIP)(2)B only inhibited unwinding reactions when it was preincubated with the helicase-nucleic acid complex. (BIP)(2)B quenched NS3 intrinsic protein fluorescence with an apparent dissociation constant of 5 microM, and in the presence of (BIP)(2)B, HCV helicase did not appear to interact with a fluorescent DNA oligonucleotide. In assays monitoring HCV helicase-catalyzed ATP hydrolysis, (BIP)(2)B only inhibited helicase-catalyzed ATP hydrolysis in the presence of intermediate concentrations of RNA, suggesting RNA and (BIP)(2)B compete for the same binding site. HCV helicases isolated from various HCV genotypes were similarly sensitive to (BIP)(2)B, with half-maximal inhibitory concentrations ranging from 0.7 to 2.4 microM. (BIP)(2)B also inhibited ATP hydrolysis catalyzed by related helicases from Dengue virus, Japanese encephalitis virus, and humans. (BIP)(2)B appeared to bind the HCV and human proteins with similar affinity (K(i) = 7 and 8 microM, respectively), but it bound the flavivirus proteins up to 270 times more tightly. Results are discussed in light of a molecular model of a (BIP)(2)B-HCV helicase complex, which is unable to bind nucleic acid, thus preventing the enzyme from separating double-stranded nucleic acid.
منابع مشابه
Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملMolecular insights into RNA and DNA helicase evolution from the determinants of specificity for a DEAD-box RNA helicase
How different helicase families with a conserved catalytic 'helicase core' evolved to function on varied RNA and DNA substrates by diverse mechanisms remains unclear. In this study, we used Mss116, a yeast DEAD-box protein that utilizes ATP to locally unwind dsRNA, to investigate helicase specificity and mechanism. Our results define the molecular basis for the substrate specificity of a DEAD-b...
متن کاملCloning and expression of NS3 helicase fragment of hepatitis C virus and the study of its immunoreactivity in HCV infected patients
Objective(s): Hepatitis C is a major cause of liver failure worldwide. Current therapies applied for this disease are not fully effective and produce side effects in most cases. Non-structural protein 3 helicase (NS3) of HCV is one of the key enzymes in viral replication and infection. Therefore, this region is a promising target to design new drugs and therapies against HCV infection. The aim ...
متن کاملMechanism-Based Studies of the Active Site-Directed Inhibition and Activation of Enzyme Transketolase
Derivatives of phenyl-keto butenoic acids have been reported to be inhibitors of pyruvate decarboxylase, (PDC). The inhibition of transketolase, a thiamine requiring enzyme such as PDF, by meta nitrophenyl derivative of 2-oxo-3-butenoic acid (MNPB) is reported here. These studies indicate that the inhibitor binds to the enzyme at the active site. A two-step inhibition was observed, first th...
متن کاملComputational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein
HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 49 9 شماره
صفحات -
تاریخ انتشار 2010